Rational series for multiple zeta and log gamma functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational series for multiple zeta and log gamma functions

We give series expansions for the Barnes multiple zeta functions in terms of rational functions whose numerators are complex-order Bernoulli polynomials, and whose denominators are linear. We also derive corresponding rational expansions for Dirichlet L-functions and multiple log gamma functions in terms of higher order Bernoulli polynomials. These expansions naturally express many of the well-...

متن کامل

On p-adic multiple zeta and log gamma functions

We define p-adic multiple zeta and log gamma functions using multiple Volkenborn integrals, and develop some of their properties. Although our functions are close analogues of classical Barnes multiple zeta and log gamma functions and have many properties similar to them, we find that our p-adic analogues also satisfy reflection functional equations which have no analogues to the complex case. ...

متن کامل

On Eulerian Log-Gamma Integrals and Tornheim–Witten Zeta Functions

Stimulated by earlier work by Moll and his coworkers [1], we evaluate various basic log Gamma integrals in terms of partial derivatives of Tornheim– Witten zeta functions and their extensions arising from evaluations of Fourier series. In particular, we fully evaluate

متن کامل

The Multiple Gamma-Functions and the Log-Gamma Integrals

In this paper, which is a companion paper to W , starting from the Euler integral which appears in a generalization of Jensen’s formula, we shall give a closed form for the integral of log Γ 1± t . This enables us to locate the genesis of two new functions A1/a and C1/a considered by Srivastava and Choi. We consider the closely related function A(a) and the Hurwitz zeta function, which render t...

متن کامل

Multiple Dirichlet Series and Moments of Zeta and L–functions

This paper develops an analytic theory of Dirichlet series in several complex variables which possess sufficiently many functional equations. In the first two sections it is shown how straightforward conjectures about the meromorphic continuation and polar divisors of certain such series imply, as a consequence, precise asymptotics (previously conjectured via random matrix theory) for moments o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2013

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2013.05.016